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ABSTRACT

A new program is presented for optimizing mixtures of buffers and titrants for creating pH gradients for isoelectric focusing in
immobilized pH gradients and in general for chromatographic processes. The program is written on a windows platform and it includes
several novel features compared with previous simulators. First, the estimation of a pH gradient (a non-linear problem) has been
transformed into a linear programming problem, thus allowing the use of the simplex as an optimization algorithm. Second, several
types of pH gradients can be simulated and optimized, including linear, exponential, logarithmic and sigmoidal. Finally, an equation
has been implemented in the program that accounts for the variation of the activity coefficients of ions as a function of the prevailing
ionic strength in solution. This simulator was checked experimentally by eluting solutions from a two-vessel gradient mixer and
verifying the shape of the various pH gradients. An excellent correlation was found between simulated and experimental data. The
program allows the calculation and optimization of pH profiles (including the accompanying ionic strength and buffering power values)
for mixtures of up to 50 different monoprotic or oligoprotic buffers and titrants. Calculations and optimizations are performed in a
fraction of the time required by previous programs (often in less than 1 mitt,  even for highly complex mixtures).

INTRODUCTION

In contrast to the approximate science represented
by isoelectric focusing (IEF) in soluble amphoteric
buffers (carrier ampholytes, CAs) (nothing is known
on the several hundred chemicals composing wide-
pH mixtures and the shape and range of the
generated pH gradient is never reproducible) [l],
the science dealing with immobilized pH gradients
(IPGs)  appears to be more precise: the chemicals are
well defined and the pH gradient can be engineered
as required [2]. This science has been exacting,
however: the chemistry of the Immobiline chemicals
(acrylamido buffers and titrants grafted to the
polyacrylamide matrix) has taken years to develop
(see ref. 3 for an update on these compounds) and

the calculation of wide-pH  recipes has required the
development of complex computer algorithms (see
ref. 4 for a general survey).

Correspondence to: P. G. Righetti, Chair of Biochemistry and
Department of Biomedical Sciences and Technologies, Univer-
sity of Milan, Via Celoria 2, Milan 20133, Italy.

The aim of this paper is to present a new, powerful
IPG simulation program, based on the experience
we have accumulated in the last 10 years in this field.
We shall briefly summarize here what has been
developed so far and give the reasons for this latest
evolution. Our first simulation program (MGS, or
monoprotic electrolyte gradient simulation) was
operating by the end of 1982. A first approach to the
formation of extended pH gradients was through the
sequential elution of buffering species of increasing
pK from a five-chamber mixer [5]. This procedure
was soon abandoned in favour of standard two-
vessel gradient mixing [6,7],  for which we studied the
conditions for gradient linearity, as a function of the
pK distribution of the buffers and of the titrants [7].
We thus produced formulations for a series of wide
immobilized pH gradients (spanning 2-6 pH units
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within the pH range 4-10)  optimized in terms of
gradient linearity [8,9]. We compared [8] two ap-
proaches to the generation of extended pH gradi-
ents: in one case each buffering Immobiline had the
same concentration in both vessels of the mixer; in
the other, different concentrations of buffering ions
could be present in each chamber.

In the case of two-dimensional (2D) maps, how-
ever, the best resolution in the focusing dimension
would be obtained by non-linear pH gradients,
following the relative abundance of isoelectric pro-
teins along the pH scale. Hence we also calculated
wide, non-linear IPG recipes for use in 2D maps and
in cases requiring the analysis of highly heteroge-
neous samples [lo].

During 1986, we started to expand the fractiona-
tion capability of IPGs:  up to that time, the most
extended pH interval described was 410.  For this
reason, we had not included the dissociation prod-
ucts of water (H+ and OH-) in our simulations,
because in the pH 4-10 range their concentration is
negligible. At that time, we started focusing dansyl-
ated amino acids (which exhibited pZ values in the
pH range 3-4) and we realized that there was a
strong divergence between calculated and experi-
mental pH gradients; therefore, our computer pro-
gram was expanded to include the effects of H+ and
OH- on the buffering power (/?), ionic strength and
pH profile [l 11. In fact, simulations were not only
limited to acidic but also included basic (pH 10-I 1)
intervals [12]. As chemicals with more acidic and
more basic pK values became available, extended
formulations including pH extremes were recently
computed; the widest pH range that could be
formulated was a 2.5-l 1 interval [13].

During 1988, we started a long-range program on
the characterization of existing Immobilines and on
the synthesis of new species [3].  The family of
Immobilines was thus considerably expanded and
our former program (which was limited to mixtures
of not more than ten species, including buffers and
titrants) could no longer handle the new generation.
These factors forced us to develop a new program,
PGS (polyelectrolyte gradient simulation), for IEF
in IPGs and for chromatography [14,15].

All these programs, however, had some short-
comings, as outlined below.

(a) The approach of minimizing the coefficient of
variation of the buffering power [CV(/I)],  for pro-

ducing linear pH gradients, is a successful strategy
only if the concentration of the Immobiline mixture
is constant, i.e., only when the two vessels of the
gradient mixer contain the same solution titrated at
the two extremes of the pH interval (equal concen-
tration method) [8]; however, more flexibility in
recipe calculation is obtained by the “unequal
concentration” method, i.e., by using different mo-
larities of the same Immobilines in each vessel. With
this latter approach, Righetti et al. [16]  proposed
minimizing SD(pH)  (the standard deviation along
the pH course) by using the steepest descent prin-
ciple in the search for buffer concentrations allowing
for a better linearity of the pH course.

(b) Minimization of CV(p), although working
satisfactorily in the pH range 410,  cannot perform
properly outside these boundaries, where there is a
strong contribution of water to the buffering power;
as the latter is represented by two branches of a
hyperbola, CV@)  as a target function becomes
almost meaningless,

(c) Both our previous programs (MGS and PGS,
for mono- and polyelectrolytes, respectively) were
meant for modelling only linear pH gradients,
whereas there are many applications also for non-
linear recipes.

Given the above limitations, we have recently
expanded our previous programs so as to be able to
calculate and optimize not only linear, but also
logarithmic, exponential and sigmoidal gradients
[ 17,181.  Another novelty of our latest development
was that we abandoned the minimization of CV(p)
and adopted as a target function the minimization of
the sum of squares of residuals &). The new
simulator performed up to ten times better than our
previous programs and could formulate recipes
having deviations from linearity well below 1% of
the given pH interval (a limit set with the previous
MGS and PGS programs).

In this work, we delineate what could possibly be
the ultimate step in “pH gradient engineering”. The
following major improvements have been made: (a)
the new program is written under a Windows
environment, a most powerful and “user-friendly”
program manager; (b) we have been able to adopt, in
the optimization algorithm, the simplex method for
linear programming (LP), which is much faster and
accurate than Monte Carlo or steepest descent
procedures; and (c) for the first time, a new algo-
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rithm has been introduced that corrects the activity
coefficients of ions according to the prevailing ionic
strength in solution.

With the latter improvements, we feel that “pH
gradient engineering” has now become a numerical
science. The program is available from Hoefer
Scientific Instruments (654 Minnesota Street, San
Francisco, CA 94107, USA).

EXPERIMENTAL

The chemicals listed in Table I were purchased
from Fluka (Buchs,  Switzerland) and were of analyt-
ical-reagent grade.

pH gradient measurements
In order to check the quality of the simulated

gradients and for the correction of activity coeffi-
cients introduced, we eluted from a two-vessel
gradient mixer some simulated mixtures and mea-
sured the pH of the fractions. The following proce-
dure was adopted: 60 ml of each limiting solution
(corresponding to the “acidic” and “basic” extremes
of the pH gradient, respectively) were prepared,
degassed, equilibrated under argon and loaded in a
two-vessel gradient mixer (the acid solution usually
being in the mixing chamber). If the pH gradient
extended above pH 7, the alkaline part of the
gradient (usually placed in the reservoir) was pro-
tected from CO1 adsorption by flushing with argon.
Production of the correct pH gradient on elution
was ensured by (a) using a stirrer in both chambers,
(b) avoiding glycerol or other additives in the mixing
chamber and (c) flushing with argon all eluted
fractions above pH 7. Volumes of 2 ml were col-
lected, for a total of 60 fractions. Prior to pH
measurements, all fractions were equilibrated at
25°C.

As a gradient mixer, we used that designed by
Svensson and Pettersson [ 191 for isoelectric focusing;
stirring action was provided by placing the two
electrically driven helices  in both vessels simulta-
neously. The absence of back-flow was checked by
visual inspection at the interface of the two solu-
tions, one of them being strongly coloured with
bromophenol blue. Linearity of the elution profile
was also checked by readings at 600 nm of the blue
fraction. Note that, in the absence of a density-
forming agent in the mixing chamber (as is custom-

ary in gradient mixing), the two solutions are truly
hydrostatically equilibrated.

THEORY

The problem of finding a solution to the creation
of a linear (or non-linear) pH gradient on mixing
two limiting solutions containing a mixture of
buffering (and titrant) ions is not trivial. We have
already given in previous papers [4-71  all the rele-
vant equations needed for solving the problem (i.e.,
the dissociation of weak acids and bases; the electro-
neutrality conditions; the total buffering power of
the solution; the total ionic strength of the system;
and the Peterson-Sober equation allowing the cal-
culation of the actual concentrations dispensed in
each liquid element eluted from the mixer). How-
ever, a difficult task is the choice of the target
function to be extremized and the selection of the
proper optimization algorithm working on such a
target. In the past, we had chosen, as a target
function, the minimization of the coefficient of
variation of the buffering capacity [CV(@],  defined
as the ratio between the standard deviation of the
buffering capacity and its mean value: CV(& =
SD(&/j3. As an alternative method, we had also
used, as a goal for maintenance of pH gradient
linearity, the minimization of SD(pH). As optimiza-
tion algorithms, we had already discarded stochastic
(also known as Monte Carlo) methods, which utilize
random extraction of the vector to be optimized
and compute the target function. Unfortunately,
stochastic methods usually converge too slowly,
rendering their use on personal computers imprac-
tical.

We had then opted for the “steepest descent
(Cauchy)”  algorithm. In this method, the minimum
of a function f(k) is found by descending from a
given starting point, defined by the parameter vector
k*, along the steepest slope, defined by the minimum
value of f’(k*), found by exploring in all directions
the space around k*. After one descending step, the
new steepest direction is searched and the process is
then iterated until the attainment of the desired
minima [20-221.  The most serious drawback of the
steepest descent approach is that the search comes to
an end when a minimum is reached, regardless of it
being an absolute or relative minimum. In order to
avoid this, we had provided in previous programs
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the possibility of interrupting the routine calcula-
tions and allowing educated guesses to be entered by
a machine-user interaction procedure. This method
also was extremely slow and often computation of
complex mixtures encompassing wide pH intervals
required several days of calculations.

Ideally, one might want to use the simplex meth-
od, by reformulating the objective function, so that
it is linear. Linear objective functions then lead
automatically to linear programming (LP). In the
following section, we shall show how it is possible to
transform the problem of pH gradient optimization
from a non-linear to a linear case, thus allowing the
adoption of the simplex as an optimization algo-
rithm.

Linearization qf the problem and the simplex algo-
rithm

We can express the problem as follows: given m
polyprotic species, of known pK values, and a pH
curve, represented by the function pH(t), it is
necessary to find an algorithm able to calculate the
initial concentrations of the m species: c,A,  cZB,  z =
1, . . . , m, to be placed in each chamber of a two-vessel
gradient mixer so that, upon linear mixing, the
eluate will contain a variable pH (with time),
approximating the desired function pH(t). For a
solution, the problem will be analysed first from a
hydrodynamic point of view, then from its chemical
side and finally from a numerical point of view.

Hydrodynamically, if equal volumes of two solu-
tions, one in a mixing chamber (called “acidic”, as it
contains the lowest pH value) and the other in a
reservoir (“basic” solution) are linearly mixed, it can
be demonstrated that, for each species (.A(t)  in the
mixing chamber, the variation in concentration
during elution can be expressed by the following
differential equation:

where l(t)  is the height of the solution in the two
chambers, S is the section of each chamber, q is the
liquid flux per time unit and CB is the concentration
of each species in the basic chamber. On integration,
and remembering that the eluted volume V is given
by V= (SE), one obtains the explicit form of CA(t):

cA@)=cA(l  -$  t)++ tCg (2)

Note that eqn. 2 is the equation of Peterson and
Sober [23], simplified for a two-chamber gradient
mixer. The same reasoning can be extended to the
case of m non-interacting species, resulting in the
following equation:

i:lCiA(t)  =iFlciA - &. ti;,ci,  + $ ’ ‘,& ciB (3)
r - l

We have so far treated the hydrodynamic facet of
the problem; we shall now proceed to the chemical
aspects. We recall here the general equations for the
dissociation degrees of polyprotic acids (&), bases
(&) and zwitterions (&):

(4)
i=O

gb(t) = jy abi(t>(n  - 4
i=O

g=(t)  = k(t) - gb(t)

(5)

(6)

where ai is the dissociation degree of the ith species
and n is the number of protolytic groups. The degree
of dissociation, in turn, depends on the pK of each
ionizable group, on the prevailing pH in solution
and (in our particular solution) on time t. As we
know the starting pH in the “acidic” chamber, we
shall be able to calculate at each time t the electro-
lytic equilibrium in this chamber as elution progres-
ses, i.e., we can calculate the degree of dissociation of
each species as the content of the “acidic” chamber
is progressively titrated by the content of the “basic”
chamber. By assuming that of the m input species I
are acids, p bases and the remaining zwitterionic,
according to the electroneutrality law, it will be

f CiA(tk?iz(f)  - WI(t)  + KV-=o ( 7 )
i=l+p+l W ‘I(0

The first member of eqn. 7 can be written as an
implicit function, depending on time t and on 2 m
parameters, of the type

f(ClA, CZA,  . . . . ‘%A, ClB, c2B, . . . . CmB~  t> (8)

which is linear in the parameters CfA, ciB. The
original problem can thus be reduced to the search
for the 2m parameters c = (CIA,  cZA, .., c,,&, clB,
CZB, . . ., c,B), such that

f(c,r)  = OVt~[to,t,l (9)
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The problem now consists in selecting from a
family of functions of the type f(c, t) a particular
functionf(c*,  t) satisfying the condition that, in the
interval [ti, t.], it will approximate zero. The search
for such a function can take two pathways: either
exact calculus, or methods of discrete calculus. As
the latter seems more manageable, the family of
functionsf(c, t) is now considered as an assembly of
discrete functions, defined over the points { ti , . . . , t.}
rather than over the continuous interval [tl, rd. In
addition, as f is linear in its 2m parameters, the
functionf(c, t) can be rewritten in a vectorial form of
the type

A-c-b (10)

where A is an n x 2m matrix, c is a 2m-dimensional
vector and b is a n-dimensional vector. Under this
terminology, eqn. 9 can be rewritten as follows:

m;ln  IIAec-blI), (11)

where I( e( JP indicates the Lp norm of the vector e
[24].  When using the Ll norm, the problem can be
transformed into a problem of linear programming.
In fact, for L1  approximations, the problem can be
reduced to

min f: I bi F UijCj ( (12)
i=l i=l

subject to no restrictions whatsoever. Even though
eqn. 12 still does not represent a linear programming
problem, it can be easily converted into one. Con-
sider the problem

min i ei
i=l

subject to
2m

ei + C aijcj 2 bi i= 1, 2, . ..) n
j=l

2m (13)
ei- Caijcja -bi i= 1, 2, . . . . n

j=l

It is not difficult to see that, in an optimum
solution el, e2, . . . , e,, cl, c2, . . . , czn of eqn. 13, ei
should be the smallest possible value in between the
two bounds bi - aijcj  and bi + aijcj.  Hence,

2m

eT = 1 bi - C aijcr I
j=l

and the objective function ei takes the value
” 2m

ei = 1 1 bi - C UijCr 1
i=l j=l

(15)

as desired. We conclude that cl, c2, . . . , c, is the best
L1  approximation to a solution of eqn. 11. This
solution is not the final one, however, as we need the
following additional constraints to the program: (a)
the sum of concentrations of the m species in the two
chambers must be lower than a molarity predeter-
mined by the user; (b) the average fi power can also
be predetermined by the user (in a linear form, as for
the electroneutrality law); and (c) each concentra-
tion ci must be greater than zero. The first condition
can be met by adding to eqn. 13 the following
constraint:

1 CIA < k 1 CiB  < k
i = l i=l

(16)

The second condition can also be satisfied by
adding a constraint to eqn. 13 of the type

(17)
i=l

where fl(ti)  is the buffering power of the solution in
the acidic chamber at time t and flhl  is the average /I
preselected by the user (note that summation of p is
used in order to obtain a p average). The last
condition is easily met by adding to eqn. 13 the
constraint c> 0. At this point, it is clear that the
simplex algorithm can be applied to the above
problem, as it has now been converted into a linear
programming problem.

The simplex, first proposed by Dantzig in 1948
(see ref. 25 for a review), is a powerful optimization
algorithm consisting of (a) making a series of linear
combinations at each step, so that the value of the
target function diminishes, and (b) tinding an opti-
mum solution, after a number of iteration steps,
which is always smaller than the larger of the two
dimensions of the constraint matrix.

The calculus routine finally adopted is that imple-
mented by Kuenzi et al. [26].

The problem of the activity coefficients of ions
This is a formidable problem, whch has been

avoided in all our previous computations [4-81.
Previously, we assumed that, provided that IPG gels
were made to contain small total amounts of
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buffering and titrant ions (not exceeding 10 mM),
this problem could be neglected. However, in several
recipes encompassing wide pH intervals (e.g., 4-8 pH
units), and also in Immobiline membranes [27], the
total ion molarity grafted in the gel often exceeds
30 mM, which calls for a correction to the activity
coefficients of the ions, if an exact science is sought.

The original Debye-Hiickel theory is still the basis
for most calculations of activity coefficients. This
theory assumes that ions in solution behave as point
charges, distributed in a homogeneous dielectric (the
solvent); by applying the electrostatic and thermo-
dynamic laws, the Debye-Hiickel relationship is
derived, valid only for highly diluted solutions and
for fully dissociated ions:

-log y=As+-__JI (18)

where y is the average activity coefficient of a binary
electrolyte, Z+ and z_ the respective charges, / the
ionic strength and A a constant that depends on the
absolute temperature and the dielectric constant of
the solvent (for water at 25°C A = 0.509; in many
textbooks, A is simply given as 0.5). The experimen-
tal results agree with the Debye-Hiickel theory only
for concentrations lower than 1 mM. Thus, a
modified Debye-Hiickel expression has been de-
rived for higher molarities:

-log y=Az2. Jr
1 -t BaJI

(19)

where a is a parameter, measured in angstroms,
which is roughly proportional to the diameter of a
hydrated ion and B is a constant which again
depends on the absolute temperature and the dielec-
tric constant of the solvent (for water at 25°C
B = 0.328). It should be noted that, if a is taken as
6 A (which corresponds to the average diameter of a
number of ions) the error in the estimation of y is less
than 1% in solutions having 1 values lower than
0.2 equiv. 1-r. In contrast, eqn. 18 does not represent
experimental data properly: in solutions up to
0.1 equiv. 1-l the error is > 10% (Fig. 1).

Over the years, a number of equations have been
derived in an attempt to obtain better y estimates
(see ref. 28 for a review and for additional references
to eqns. 20-22). Thus, Guggenheim proposed the
following parametric equation:

fi bl-logy=Az2.~-
1 +fi

1.0

0.9

Y+

0.8

a=7A
a=6A
a=sA

0.7

0 0.05 0.1 0.15 0.2 0.25

ionic strength

Fig. 1. Theoretical plot of the dependence of activity coefficients
on prevailing ionic strength in solution for different ion diam-
eters. Note that, according to the original Debye-Hiickel theory,
the diameter of an ion should be zero. In most calculations,
however, an average diameter of 6 ,J%  is adopted.

where the average ion diameter has been taken as
a = 3 A (note that, in this case, Ba = 1). A similar
equation was proposed by Guntelberg:

fi-log y = Az+z_  ~
1 -tJI

(21)

based on the same assumption of Ba = 1. Finally, an
empirical relationship was derived by Davies:

-log y = Az+z_ ( JI~ -
1 ifi

0.21
>

(22)

The dependence of the activity coefficient on the
ionic strength, according to eqns. 18, 21 and 22, has
been plotted in Fig. 2. It appears that the Davies
equation (eqn. 22) follows the experimental data
more closely: in solutions of ionic strength up to 0.1
the error is only 3%, and at I up to 0.5 the error is
still < 8%.

The situation is even more complex for oligopro-
tic ions, as shown in Fig. 3. It is seen that, whereas
for a monoprotic ion the y value tends asymptotical-
ly to 0.7, at high ionic strength for a divalent ion it
decreases dramatically to a limit value of 0.3. For
higher valency  ions, the fall-off is even more pro-
nounced: for a triprotic ion the asymptotic value is
barely 0.05 and for a tetravalent ion the activity
coefficient falls off rapidly to zero already at an ionic
strength of 0.2.

As will be shown in the Results section, the Davies
equation (eqn. 22) seems to lit our experimental data
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0 0.1 0.2 0.3 0.4 0.5

Ionic strength (mot/kg  H,O)

Fig. 2. Plot of the dependence of activity coefficients on prevailing
ionic strength in solution according to different equations:
Debye-Hiickel  (eqn. 18) Guntelberg (eqn. 21) and Davies
(eqn. 22). Note that the Davies equation is empirical and is based
on experimental data for (0) HCI, (+) HNO,, (A) NaCIO,  and
(0) KCl.

most satisfactorily, so this equation was incorpo-
rated in our computer program for automatic
correction of the activity coefficients as a function of
the prevailing ionic strength in solution, Since, in
practice, when introducing into our computing
routines the correction for the activity coefficients,
only the stoichiometric constants are altered and the
mathematical formulations of equilibria and the
mass and charge balance equations are left unal-

r - 2
.
--..

..--... ** . . . . . . . . .
0.2.. n 43

. .=..
.-4.* ‘mm m..

07 ?.a..,,_,,,,,,,,__,,,l ~=mmmmmmmmmm

0 0.1 0.2 0.3 0.4 0.6

Fig. 3. Plot of the dependence of activity coefficients on prevailing
ionic strength in solution for ions of different valency.  Note the
huge decrease in the coefficients in the transition from mono-
protic to diprotic species. Note also how, for a tetravalent ion, the
activity coefficient is essentially zero at an ionic strength of
0.2 equiv. 1-l.

tered, the following two-step computation proce-
dure was adopted. Once a mixture of acids and bases
is given, the problem is solved to a first approxima-
tion by using the concentrations instead of the
activities. Once the final ionic strength of the
solution has been derived, the activity coefficients of
the various ions are calculated at the given Z value.
At this point, new values of pK and pH gradients are
derived, corrected according to the activity coeffi-
cients.

Program architecture
The above algorithms were implemented in C

language under the programming platform Win-
dows 3.0. Windows is a most powerful operating
program, which offers the following main innova-
tions: (a) object-oriented programming, (b) mes-
sage-driven architecture and (c) multitasking. The
main “window” usually contains a “title bar”, a
“menu”, a “sizing border”, a “system menu icon”
and “maximize/minimize icons”. The inner area of
the main window (or workspace) can be used to
generate new “child windows”, each containing a
document. In our case, we prepared three types of
document windows: (a) a first type for handling the
input data, i.e., the different buffers and titrants with
their physico-chemical characteristics (e.g., pK val-
ues, type of substance, such as acid, base, zwit-
terion); (b) a second type for handling the input
data, and precisely for calculating the molarities of
each species to be placed in the “acidic” and “basic”
chambers, respectively; this sheet is similar to the
previous one, but in addition it will create archives
for storage of the optimized recipes for the various
pH intervals calculated; and (c) a third type used for
the graphic display of simulated recipes and pH
intervals.

Examples of the data obtained and experimental
validation of the simulations are given below.

RESULTS

Program and simulations
Fig. 4 shows the main dialogue box in our

computer program for creating a new mixture and
inserting data. It is seen that, in contrast to our
previous programs (except for refs. 18 and 19) the
user has an option of up to four types of gradients:
linear, logarithmic, exponential and sigmoidal. Once
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TABLE l!

OPTIMIZED RECIPE FOR CREATION OF A LINEAR
pH 3-l I GRADIENT, AS PLOTTED IN FIG. 5

Fig. 4. Dialogue box for data insertion for creation of a new
mixture. Note that options are given for the creation of four
different types of pH gradients. The other required input data are
the starting (lower) and ending (upper) pH values (i.e., the bounds
of the pH interval to be generated), the maximum total molarity
of all species in solution and the average desired /l power along the
eluted  pH gradient.

the type of gradients is selected, the program needs,
as input data, the lower starting pH (i.e., the desired
pH of the solution that will be placed in the “acidic”
or mixing chamber) and the upper pH (i.e., the pH of
the solution which will fill the “basic” chamber, or

TABLE I

LIST OF BUFFERS (WITH RESPECTIVE pK VALUES)
USED IN MODELLING AND MEASURING pH GRA-
DIENTS

No. Name Type pK values

1 HCI” Acid 0.4
2 Citric acid Acid 3.128, 4.762, 6.4
3 Chloroacetic acid Acid 2.92
4  I t acon ic  ac id Acid 3.85, 5.45
5 Acetic acid Acid 4.75
6  Malon ic  ac id Acid 2.83, 5.69
7 Sulphanilic acid Acid 3.23
8  Glu ta r i c  ac id Acid 4.31. 5.41
9 Tris base Base 8.3

IO Imidazole Base 6.9
II NaOH” Base I3
I2 Diethylamine Base 10.489
I3 Piperazine Base 9.83
I4 Quinine Base 8.52
15 Azetidine Base II.29
16  P i loca rp ine Base 6.87

a For computational purposes HCI was assigned pK = 0.4 and
NaOH pK= 13.

No. Name Chamber A Chamber B
(mM) (mM)

I HCI 30. I34 0.000
2 Citric acid 2.822 9.685
3 Chloroacetic acid 0.000 0.000
4 Itaconic acid 4.253 0.000
5 Acetic acid 0.000 0.000
6 Malonic acid 0.000 0.000
7 Sulphanilic acid I.021 5.143
8 Glutaric acid 0.000 0.000
9 Tris base 4.324 4.051

IO Imidazole 0.000 8.086
II NaOH 0.000 33.308
I2 Diethylamine 0.000 6.164
1 3 Piperazine 23.833 1.913
14 Quinine 0.000 I .650
I5 Azetidine 0.000 0.000
I6 Pilocarpine 3.613 0.000
--

reservoir). Important options given to the user are
(a) the selection of maximum-total molarity (as a
sum of the partial molarity of each ion in solution)
and (b) the selection of the mean /3 power along the
pH gradient.

We shall now give some examples of different
types of gradients that can be generated by our
computer program. Table I gives a mixture of
sixteen common acids and bases (weak and strong),
some oligoprotic and most monoprotic (pK values
as given in refs. 29 and 30). These tables can be
prepared and stored by the user as databases.
Table11 gives the same kind of table, with already
calculated and optimized molarities of all compo-
nents for creation of a linear pH 3-l 1 gradient with
the following preset requirements: maximum total
molarity of all ions, 100 mM; and average p,
6 mequiv. 1-i pH-‘.  It should be noted that every-
thing is done automatically by the computing algo-
rithms: thus, during the calculations and optimi-
zation, some components are automatically ex-
cluded by the mixture, since their pK values would
hamper the generation of a linear gradient. In this
particular case, components 3, 5, 6, 8 and 15 have
been automatically excluded from the mixture. The
resulting gradient is shown in Fig. 5; it is seen that,
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5

3
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Fig. 5. Simulation of (0) the pH gradient profile and (W
deviation from linearity of the mixture in Table II. Parameters of
the gradient: linear pH 3-l 1 gradient; maximum total molarity,
100 mM; average b, 6 mequiv. l- 1 pH- i. Note the minute
deviations from linearity and their constant oscillations around
zero.

by linear elution, from a two-vessel gradient mixer,
of two equal volumes of the compositions as given in
Table II for the “acidic” and “basic” chambers, a
remarkably linear pH gradient is obtained. The
deviations from linearity are extremely minute, and
are well below 1% of the width of the generated pH
interval, a limit given in previous calculations [G3].

Table III gives the same mixture, but for the
calculation of a logarithmic gradient spanning the
pH range 410,  with the following constraints:

TABLE III

OPTIMIZED RECIPE FOR CREATION OF A LOGA-
RITHMIC pH 4-10 GRADIENT, AS PLOTTED IN FIG. 6

No. Name

1 HCl 18.129 0.000 1 HCl 14.360 0.000
2 Citric acid 4.083 5.794 2 Citric acid 0.000 14.958
3 Chloroacetic acid 0.000 0.000 3 Chloroacetic acid 0.000 0.000
4 Itaconic acid 0.000 0.000 4 Itaconic acid 0.000 2.780
5 Acetic acid 0.000 0.000 5 Acetic acid 0.000 0.000
6 Malonic acid 2.521 0.000 6 Malonic acid 0.000 3.338
I Sulphanilic acid 0.000 0.000 7 Sulphanilic acid 30.632 3.797
8 Glutaric acid 0.000 0.000 8 Glutaric acid 9.029 0.000
9 Tris base 9.363 0.000 9 Tris base 9.033 2.764

10 Imidazole 0.000 11.203 10 Imidazole 0.000 0.000
1 1 NaOH 0.000 11.380 11 NaOH 0.000 57.530
12 Diethylamine 0.000 0.000 12 Diethylamine 0.000 0.000
13 Piperazine 10.181 11.816 13 Piperazine 34.829 6.709
14 Quinine 0.000 9.852 14 Quinine 0.000 0.939
15 Azetidine 0.000 0.000 15 Azetidine 0.000 0.000
16 Pilocarpine 5.718 O.ooO 16 Pilocarpine 2.117 7.135

Chamber A
(mW

Chamber B
(mW

8
PH

6

4 -0.01
0 20 40 60

Fraction Number

Fig. 6. Simulation of (0) the pH gradient profile and (m)
deviation from the desired shape of the mixture in Table III.
Parameters of the gradient: logarithmic pH 410  gradient;
maximum total molarity, 50 mkf; average fi,6 mequiv. l- 1 pH- I.

0 r

maximum total molarity of all ions, 50 mM; and
average fi power along the pH gradient, 6 mequiv.
1-l pH- ‘. The gradient thus formed is shown in
Fig. 6; it is seen that the pH profile has the desired
shape and that again the deviation (this time from
the desired logarithmic shape) is still minute. Note in
Fig. 6, as in Fig. 5, how the deviations oscillate
constantly around zero in an almost sinusoidal
fashion, a prerequisite for minimizing this function
[17,18].

TABLE IV

OPTIMIZED RECIPE FOR CREATION OF A CONCAVE
EXPONENTIAL pH 4-10 GRADIENT, AS PLOTTED IN
FIG. 1

No. Chamber A
(mW

Chamber B
(mW
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Fig. 7. Simulation of (0) the pH gradient profile and (m)
deviation from the desired shape of the mixture in Table 1V.
Parameters of the gradient: exponential pH 410  gradient;
maximum total molarity, 100 mM; average p, 6 mequiv. 1-l
pH-‘.

Table IV gives again the same mixture, but for the
calculation of a concave exponential pH 410 gra-
dient with the following constraints: maximum total
molarity of all ions, 100 mM; and average /I power
along the pH gradient, 6 mequiv. I- ’ pH- ‘. The
gradient thus formed is shown in Fig. 7; here too the
minute deviation from the desired shape should
be appreciated. Such deviations (of barely a few
thousandths of a pH unit) cannot be appreciated
even by the most sensitive pH meters.

E.uperimental  validation qf‘ the uctivitj> coefficient
corrections

We have seen above that it is possible to select
different shapes of pH gradients, and that such
shapes are automatically calculated and optimized
by our simulator in extremely short times (usually in
less than 1 min). It remains to be seen whether the
activity coefficient corrections we have implemented
(the Davies equation) have any practical meaning
and can be reproduced in routine work. We there-
fore explored how the Davies equation applies in
different cases, such as conditions of low to very

TABLE V

OPTIMIZED RECIPE FOR A pH 3.336.6  G R A D I E N T
(MAXIMUM MOLARITY 75 mM PER CHAMBER, MEAN
BUFFERING POWER 14 mequiv. I-’ pH-i)

Recipe used for modelling  the pH gradient in Fig. 8

Name Chamber I (mM) Chamber 2 (mM)

Chloroacetic acid 3.415 0.000
ltaconic acid 16.35 16.03
Acetic acid 10.28 9.81
lmidazole 4.17 46.69

Fig. 8. Comparison between simulated and experimental pH profiles. A pH 3.336.3  gradient was generated according to the recipe in
Table V. Constraints: maximum molarity (in each chamber), 75 mM; average p power, 14 mequiv. 1-l pH ’ Sixty 2-ml fractions were
eluted  and the pH carefully measured at 25°C in a thermostated vessel (m = pH-measured).  The simulated pH profiles, with
(+ = pH-Davies)  and without (0 = pH-NoCorr)  Davies correction, are also plotted. Note the divergence between the two simulated
profiles and the good agreement between experimental and Davies-corrected simulations.
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EXAMPLE OF THE CALCULATIONS PERFORMED ON ELUTED FRACTIONS FOR THE pH GRADIENT PLOTTED
IN FIG. 8

Abbreviations: meas. = fraction number; pH-meas. = experimentally measured pH gradient; pH-NoCorr.  = simulated pH gradient
without any correction; pH-Huck. = pH gradient simulated with the Debye-Hilckel  correction; pH-Davies = pH gradient simulated
with the Davies correction; I = ionic strength of each fraction (expressed in equiv. l- ‘); /l = buffering power (expressed in mequiv. 1-i
pH-r).

Meas. pH-meas. pH-NoCorr.  pH-Huck. pH-Davies I B

1 3.098 3.121 3.068 3.065 0.00556 9.568
2 3.171 3.202 3.143 3.14 0.00611 9.898
3 3.258 3.279 3.216 3.213 0.00668 10.288
4 3.335 3.354 3.287 3.283 0.00726 10.715
5 3.395 3.425 3.354 3.35 0.00786 11.159
6 3.453 3.494 3.419 3.414 0.00847 11.601
1 3.504 3.56 3.481 3.476 0.00909 12.027
8 3.571 3.624 3.541 3.536 0.00973 12.426
9 3.622 3.685 3.6 3.594 0.01039 12.788

10 3.683 3.745 3.656 3.65 0.01105 13.11
11 3.14 3.804 3.712 3.705 0.01173 13.389
12 3.792 3.861 3.766 3.759 0.01242 13.623
13 3.842 3.918 3.819 3.812 0.01312 13.814
14 3.893 3.974 3.871 3.864 0.01384 13.965
15 3.946 4.029 3.923 3.915 0.01457 14.081
16 3.996 4.083 3.974 3.966 0.0153 14.167
17 4.049 4.138 4.025 4.016 0.01605 14.229
18 4.101 4.192 4.075 4.066 0.01681 14.272
19 4.152 4.246 4.125 4.115 0.01759 14.303
20 4.203 4.299 4.174 4.164 0.01837 14.326
21 4.259 4.353 4.224 4.213 0.01917 14.347
22 4.306 4.406 4.272 4.261 0.01999 14.369
23 4.351 4.459 4.321 4.309 0.02082 14.393
24 4.411 4.511 4.369 4.357 0.02166 14.423
25 4.464 4.564 4.417 4.404 0.02252 14.458
26 4.509 4.616 4.464 4.45 0.02341 14.497
21 4.555 4.668 4.511 4.497 0.02431 14.54
28 4.608 4.12 4.558 4.543 0.02523 14.585
29 4.66 4.771 4.604 4.589 0.02617 14.631
30 4.712 4.822 4.65 4.634 0.02713 14.677
31 4.758 4.872 4.696 4.679 0.02811 14.719
32 4.8 4.923 4.742 4.724 0.02911 14.757
33 4.847 4.973 4.787 4.769 0.03014 14.788
34 4.894 5.023 4.832 4.813 0.03118 14.81
35 4.942 5.072 4.878 4.858 0.03224 14.819
36 4.996 5.122 4.923 4.903 0.03332 14.814
31 5.043 5.171 4.969 4.948 0.03441 14.791
38 5.096 5.22 5.015 4.994 0.03551 14.746
39 5.148 5.269 5.062 5.04 0.03661 14.677
40 5.2 5.318 5.11 5.087 0.03772 14.581
41 5.23 5.367 5.158 5.135 0.03883 14.456
42 5.215 5.416 5.207 5.184 0.03993 14.302
43 5.329 5.465 5.258 5.234 0.04102 14.12
44 5.311 5.514 5.31 5.287 0.04208 13.913
45 5.429 5.563 5.364 5.34 0.04313 13.685
46 5.481 5.612 5.42 5.397 0.04415 13.444
47 5.539 5.661 5.478 5.455 0.04513 13.204

(Continued on p. 324)
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TABLE VI (continued)

Meas. pH-meas. pH-NoCorr. pH-Huck.

-

-
pH-Davies I B

48 5.591 5.71 5.538 5.516 0.04607 12.976
49 5.648 5.759 5.6 5.58 0.04697 12.78
50 5.699 5.807 5.665 5.647 0.04781 12.635
5 1 5.759 5.855 5.732 5.716 0.04861 12.56
52 5.826 5.901 5.8 5.787 0.04935 12.576
53 5.89 5.947 5.868 5.858 0.05003 12.696
54 5.964 5.992 5.936 5.93 0.05064 12.93 1
55 6.032 6.035 6.002 5.999 0.05119 13.282
56 6.094 6.077 6.066 6.066 0.05168 13.745
57 6.151 6.117 6.126 6.129 0.05209 14.31
58 6.208 6.156 6.183 6.188 0.05244 14.963
59 6.261 6.193 6.236 6.243 0.05271 15.69
60 6.308 6.228 6.285 6.294 0.05292 16.476

high ionic strength and narrow and wide pH gra-
dients.

Fig. 8 gives the pH profiles generated by computer
simulation without (open boxes) and with (dia-
monds) the Davies correction. The starting mixture
spans the pH interval 3.3-6.3 and has the following
constraints: maximum molarity (in each chamber),

6.5

6

75 mM; and average ppower, 14 mequiv. 1-l pH- ‘.
This mixture was selected so as to avoid CO2 ad-
sorption and as a representative low ionic strength
recipe (as given in Table V). In parallel to the
simulation, 60 ml of each of the two solutions were
prepared, loaded in a two-vessel gradient mixer and
eluted, collecting 2 ml per fraction.

5.5

5

pH 4.5

4

3.5

3

--t--- I

20 30 40 50 60

Fraction Number
Fig. 9. Comparison between simulated and experimental pH profiles. A pH 3.3-6.3 gradient was generated according to the recipe in
Table V (with a tenfold increase in molarity of each ion). Constraints: maximum molarity (in each chamber), 750 mM; average jl power,
140 mequiv. 1-r pH- ‘. Sixty 2-ml fractions were eluted and the pH carefully measured at 25°C in a thermostated vessel
(W = pH-measured). The simulated pH profiles, with (+ = pH-Davies)  and without (0 = pH-NoCorr)  Davies correction, are also
plotted.
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Fig. 10. Comparison between simulated and experimental pH profiles. A pH 4-10  gradient was generated according to the recipe in
Table VII. Constraints: maximum molarity (in each chamber), 200 mM; average j power, 15 mequiv. l- I pH - I. Sixty 2-ml fractions were
eluted and the pH carefully measured at 25°C in a thermostated vessel (a = pH-measured). The simulated pH profiles, with
(+ = pH-Davies)  and without (0 = pH-NoCorr)  Davies correction, are also plotted.

Two phenomena are immediately apparent: there
is a strong divergence between the two computed pH
profiles in the absence and presence of the Davies
correction, and the real pH gradient, as eluted from
the gradient mixer, follows closely the simulated
profile with the Davies correction. Note that the
divergence between the two simulated profiles fol-
lows closely the prevailing ionic strength of the
eluted fractions; thus, as the total ionic strength

TABLE VII

OPTIMIZED RECIPE FOR A pH 4.CklO.O  GRADIENT
(MAXIMUM MOLARITY 200 mMPER CHAMBER, MEAN
BUFFERING POWER 15 mequiv. 1-i pH_‘)

Recipe used for modelling the pH gradient in Fig. 10.

Name Chamber 1 (mM) Chamber 2 (mM)

Chloroacetic acid 106.8 21.19
Itaconic acid 0.00 57.55
Acetic acid 15.04 0.00
Imidazole 30.06 0.00
Tris base 53.16 9.115
Diethanolamine 19.64 1.975
Ethanolamine 0.00 32.98
NaOH 0.00 126.6

increases (towards the basic end of the gradient,
owing to progressive deprotonation of weak acids),
the divergence increases from only 0.1 pH unit
(between fractions 10 and 20) to as high as 0.2 pH
unit (between fractions 40 and 50) (see also the
corresponding Table VI, which gives the main
parameters of each eluted fraction).

At this point, it is of interest to see what happens
to the same mixture at a much increased ionic
strength. We therefore took the mixture in Table V
and multiplied all the molarity values by a factor of
10. In this new mixture (still encompassing the pH
interval 3.3-6.3) the new parameters are therefore
maximum total molarity (in each chamber) 750 mM
and average #I power 140 mequiv. l- ’ pH- ‘. Fig. 9
shows the new simulated pH profiles; now the
divergence between the two profiles (with and
without correction) is much more pronounced (up to
0.45 pH unit in the region of maximum ionic
strength, i.e., fractions 4&50).  Here again it can be
appreciated that the experimental, measured pH in
the eluted fractions follows very closely the Davies-
corrected profile.

We next explored whether the corrections adopted
apply also in extended pH intervals and in alkaline
pH ranges. A new recipe was prepared (see Table VII)
encompassing the pH range 4-10, with the following
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constraints: maximum molarity (per chamber),
200 mM and average /I power, 1.5 mequiv. 1~ I pH I.
As shown in Fig. 10, the simulated patterns follow
very closely those obtained previously (Figs. 8 and
9); in the acidic part of the gradient, the two
simulated profiles (with and without Davies correc-
tion) diverge, the latter being higher than the former;
around neutrality, there is a cross-over (as clearly
hinted in the upper parts of the graphs depicted in
Figs. 8 and 9) and at alkaline pH the Davies-corrected
(and experimentally measured) pH courses run
higher than the uncorrected ones. We can therefore
conclude, from the experimental evidence presented
here, that the correction algorithm proposed fulfils
the expectations.

DISCUSSION

The simulator presented here has some unique
features compared with previous programs [4-71
‘that are worth highlighting. First, we have been able
to introduce, as an optimization algorithm, the
simplex, one of the most powerful and fastest for this
kind of task. We had discarded the simplex in all our
previous simulations on the grounds that it cannot
be applied to solving non-linear problems. We were
therefore forced to adopt mathematical transforma-
tions of all the basic equations, so as to transform a
non-linear into a linear programming problem. That
we are on correct grounds was also checked by
resimulating all our optimized mixtures with the
other available programs and also by experimentally
eluting the simulated gradients and checking the pH
values of the collected fractions.

The advantages of the simplex are several. First, it
finds the exact solution to the problem. Second, it is
much quicker than other optimization methods we
had adopted in the past. For example, in our early
programs [5,8].  based on Cauchy’s steepest descent
algorithm, the calculations were extremely slow;
thus, for calculating and optimizing a pH 4-10
recipe (containing only six or seven species) often
>24 h were required, and sometimes the ideal
solution could not be found, so that the user had to
stop the program and enter educated guesses (for
varying the molarity of the different species). Enor-
mous progress was already made with the recent
work of Tonani and Righetti [17,18],  the direct
precursor of the present program, in which the

calculation routines were reduced to only lo-
15 min.

Another unique feature of our program is the
introduction of the Davies equation for correcting
the activity coefficient of ions as a function of the
prevailing ionic strength in solution. As the prepara-
tion of immobilized pH gradients has been claimed
to be finally an exact science [2],  able to overcome all
the defects and imprecisions connected with conven-
tional isoelectric focusing in soluble, amphoteric
buffers [l], all sources of errors have to be removed,
if “pH gradient engineering” is aimed for. In
addition, in IPGs, it is customary to measure the iso-
elect& point of a protein by a simple interpolation
procedure along a pH gradient with a well known
profile. A precision of f0.01 pH unit is generally
claimed.

All the above cannot be completely valid unless
extra effort is made to eliminate the last source of
uncertainty, i.e., the variation of activity coefficients
as a function of ionic strength. It is known that, as
the ionic strength in solution is increased, the diffuse
double layer around an ion “shrinks” and progres-
sively moves close to the rigid layer. Among the
effects of such a phenomenon is a small, but non-
negligible, pKchange  of the weak anions and cations
in solution. As the recipes we formulate assume
“constant pK values”, if the latter assumption is no
longer valid one would expect a shift of the gener-
ated pH gradient. This shift is in general small
(perhaps of the order of a few hundredths of a pH
unit) at small values of ionic strength in solution. As
in general our IPG recipes were made to contain not
more than 10 mM buffering ion, we had in the past
neglected such corrections. However, the deviation
becomes appreciable at higher buffer and titrant
molarities: we have seen (Fig. 8) that even with
75 mM total ions in solution the discrepancy
between the simulated and experimental pH curves
is as high as 0.2 pH unit. At molarities >700 mM,
this discrepancy is as high as 0.45 pH unit. In many
recipes proposed today the total ion molarity often
exceeds 50 mM, so it seems impossible to continue to
ignore such corrections.

We therefore tested the various corrections pro-
posed (see eqns. 18-22) and it seems safe to con-
clude, from our data, that the Davies correction
more closely follows the experimental pH gradient
obtained. We therefore feel that the present program



E. Giaffieda et al. 1 J. Chromatogr. 630 (19931  313-327

is a major step in rendering “pH gradient” engineer-
ing an exact science. Needless to say, although our
knowledge has mostly been applied, in this decade,
to the generation and optimization of immobilized
pH gradients to be used under isoelectric focusing
conditions, it is implicit that this know-how is valid
in all other instances, e.g., for generating pH gra-
dients in ion-exchange chromatography and in all
problems of titration.
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